MEHDI GHAFARINATANZI

BIOMECHANICAL ENGINEERING, PHD POLYTECHNICH MONTREAL Mehdi.ghafarinatanzi@polymtl.ca

THESIS (Identification of Mechanical Properties in Patient-Specific Left Ventricles from Cardiac MRI)

Introduction

- Leukemia is the most common form of Childhood Cancer.
- Chemotherapy treatments for leukemia include doxorubicine.
- Problem: Doxorubicine-induced cardiotoxicity causes geometric remolding and cardiac dysfunction.
- **Objective**: Early **diagnosis** of cardiac dysfunction by characterization of **mechanical properties** as **clinical indices** and compare patients.

<u>Methodology</u>

Results

Development of the multidisciplinary computational package:

- Geometry modeling of left ventricle (LV) from image data
- Finite element analysis (FEA)
- Soft tissue biomecancis and material modeling

First, 3d modeling in Catia

- Image segmentation (Matlab Segment)
 - Reconstructed personalized LV shape:
 - produced cloud points,
 - Generated 3d Curve, volume
 - Imported into ABAQUS: meshing, loading,

Second, meshing creation and calculation in Matlab

- Generated LV from guide-point modeling (Python, Matlab)
 - Fitted finite element surfaces (Rectangle/triangle)
 - Created body (Hex/Tet), apex elements (Wedge)
 - Measured actual displacements and strains by FEA.

- Combined two models for the optimization purpose.
 - Implemented inverse algorithm using FEA (Matlab into Abaqus)
 - Minimized the difference between displacements obtained from the measurements and simulation.
 - Identified the LV's material properties.
- The identified mechanical shear stiffness as clinical indices could evaluate changes in cardiac dysfunction.
- We successfully compared 3 patients' groups who received different doses of doxorubicine.

Optimization

Reconstructed

Flement

Minimun

ÝES

ed Stiffness Paramete

Initial

values

Least square between

sured and simulated displacements

Change parameters