Sélectionnez votre langue

Tout dépôt d'offre doit être validé par un modérateur avant sa mise en ligne qui n'est donc pas instantanée.

Toutes les offres de plus de 6 mois seront supprimées.

Pour déposer une offre vous devez vous identifier sur le site, en vous connectant ou vous enregistrant.

M2 internship: Predictive Constitutive Modelling of Atrial Tissue Biomechanics

  • Kundry Reibel
  • Auteur du sujet
Plus d'informations
19 Déc 2025 10:33 - 19 Déc 2025 13:46 #1593 par Kundry Reibel
Title: Predictive Constitutive Modelling of Atrial Appendage Tissue Using Deep Learning
Supervision
Kundry Reibel, Mathieu Simon, Baptiste Pierrat
Context Stroke is the third leading cause of mortality in France. Approximately one-third of strokes are associated with atrial fibrillation, in which the left atrial appendage (AA) becomes a primary site of thrombus formation. The mechanics of the AA remain poorly understood, particularly due to its highly trabeculated architecture, which induces strong and spatially heterogeneous thickness variations.To better characterize the role of macro-structure in the mechanical response, previous experimental studies have combined full-field 3D thickness mapping, uniaxial mechanical testing, and numerical modelling to assess how structural variability influences the apparent anisotropy of atrial appendage tissue.A recent hybrid modelling framework introduced by Holzapfel et al. [1] combines deep learning with mechanical testing, histology, and second-harmonic generation imaging. While their model was trained on microstructural features from 27 tissue samples, the present work aims to explore whether comparable predictive performance can be achieved using 3D scans alone, which contain information about the trabeculated structure (see Fig.). For this purpose, we will rely on a dataset of 80 samples, each including uniaxial mechanical tests and high-resolution 3D surface scans.The aim of this internship is to develop a deep neural network capable of predicting the parameters of a continuum-mechanical constitutive law for atrial appendage tissue, based on local thickness maps extracted from 3D scans. Once established, this predictive capability would considerably improve the mechanical fidelity of cardiac computational models.
Tasks
·       Familiarization with the biomechanics context: understanding soft tissue mechanics, constitutive laws, and uniaxial testing.
·       Literature review: deep-learning approaches for constitutive modelling, physics-informed machine learning models.
·       Data preparation: performing data augmentation.
·       Deep learning model development: designing and training model to predict mechanical responses (stress–stretch curves) from thickness maps.
·       Model evaluation and comparison: analysing performance compared to standard fitting methods.
Student profileInterest and previous experience in machine learning approaches (e.g. student project). Solid programming skills; basic knowledge of continuum mechanics; interest in biomedical applications. This internship is funded for 6 months, starting in the first trimester of 2026. If you are interested, send a curriculum vitae and a short cover letter describing potential previous research experience and interests. Please, submit via email to Kundry Reibel Kundry.reibel@emse.fr.
Reference
[1] Holzapfel Gerhard A., et al. (2021), Predictive constitutive modelling of arteries by deep learning, J. R. Soc. Interface.1820210411, doi.org/10.1098/rsif.2021.0411
Dernière édition: 19 Déc 2025 13:46 par Antoine Muller.

Connexion ou Créer un compte pour participer à la conversation.

Modérateurs: Cédric LAURENTAntoine Muller
Choix utilisateur pour les Cookies
Nous utilisons des cookies afin de vous proposer les meilleurs services possibles. Si vous déclinez l'utilisation de ces cookies, le site web pourrait ne pas fonctionner correctement.
Tout accepter
Tout décliner
General
Général
Gestion des sessions
Accepter
Décliner
Analytique
Outils utilisés pour analyser les données de navigation et mesurer l'efficacité du site internet afin de comprendre son fonctionnement.
Matomo
Logiciel libre et open source de mesure de statistiques web
Accepter
Décliner
Sauvegarder